Search results for "Quantum annealing"
showing 4 items of 4 documents
Quantum annealing with manufactured spins.
2011
Many interesting but practically intractable problems can be reduced to that of finding the ground state of a system of interacting spins. It is believed that the ground state of some naturally occurring spin systems can be effectively attained through a process called quantum annealing. Johnson et al. use quantum annealing to find the ground state of an artificial Ising spin system comprised of an array of eight superconducting flux qubits with programmable spin–spin couplings. With an increased number of spins, the system may provide a practical physical means to implement quantum algorithms, possibly enabling more effective approaches towards solving certain classes of hard combinatorial…
Expansion of a quantum gas released from an optical lattice
2008
We analyze the interference pattern produced by ultracold atoms released from an optical lattice. Such interference patterns are commonly interpreted as the momentum distributions of the trapped quantum gas. We show that for finite time-of-flights the resulting density distribution can, however, be significantly altered, similar to a near-field diffraction regime in optics. We illustrate our findings with a simple model and realistic quantum Monte Carlo simulations for bosonic atoms, and compare the latter to experiments.
Quantum Random Walks – New Method for Designing Quantum Algorithms
2008
Quantum walks are quantum counterparts of random walks. In the last 5 years, they have become one of main methods of designing quantum algorithms. Quantum walk based algorithms include element distinctness, spatial search, quantum speedup of Markov chains, evaluation of Boolean formulas and search on "glued trees" graph. In this talk, I will describe the quantum walk method for designing search algorithms and show several of its applications.
Classical and Quantum Annealing in the Median of Three Satisfiability
2011
We determine the classical and quantum complexities of a specific ensemble of three-satisfiability problems with a unique satisfying assignment for up to N = 100 and 80 variables, respectively. In the classical limit, we employ generalized ensemble techniques and measure the time that a Markovian Monte Carlo process spends in searching classical ground states. In the quantum limit, we determine the maximum finite correlation length along a quantum adiabatic trajectory determined by the linear sweep of the adiabatic control parameter in the Hamiltonian composed of the problem Hamiltonian and the constant transverse field Hamiltonian. In the median of our ensemble, both complexities diverge e…